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Abstract. Sign Languages are expressed through hand and upper body
gestures as well as facial expressions. Therefore, Sign Language Recog-
nition (SLR) needs to focus on all such cues. Previous work uses hand-
crafted mechanisms or network aggregation to extract the different cue
features to increase SLR performance, which is slow and involves compli-
cated architectures. We propose a more straightforward approach which
focuses on training separate cue models specializing on the dominant
hand, both hands, face, and the upper body regions. We compare the
performance of 3D Convolutional Neural Network (CNN) models spe-
cializing in these regions, combine them through score-level fusion, and
use the weighted alternative. Our experimental results have shown the
effectiveness of mixed convolutional models. Their fusion yields up to
19% accuracy improvement over the baseline using the full upper body.
Furthermore, we include a discussion for fusion settings, which can be
beneficial for future work on Sign Language Translation (SLT).

Keywords: Sign Language Recognition, Turkish Sign Language (TID),
3D Convolutional Neural Networks, Score-level Fusion

1 Introduction

Sign Language is the means of communication for the Deaf, and each Deaf
culture has its sign language. Sign languages differ from the spoken language of
the culture. Communication between the Deaf and the hearing impaired relies
mostly on the Deaf individual learning the spoken language and using lipreading
and written text to communicate: A huge and unfair burden on the Deaf. The
reverse, teaching the general population at least some sign language may be more
accessible, and there are available educational courses for such aim. However,
gaining expertise in sign language is difficult, and the communication problem
is still unsolved. Automatic interpretation of sign languages is a necessary step
for not only enabling the human-computer interaction but also facilitating the
communication between the Deaf and the hearing impaired individuals.

Automatic Sign Language Recognition (ASLR) refers to a broad field with
different tasks, such as recognizing isolated sign glosses and continuous sign sen-
tences. The objective of the ASLR system is to infer the meaning of the sign
glosses or sentences and translate it to the spoken language. Recently, there has
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been increased progress in these efforts: Sign Language Translation (SLT) has
become an active research problem for creating interactive sign language inter-
faces for the deaf [1, 2, 17]. A number of recent papers on the topic made use of
neural network generated features. However, while the quality and representa-
tive power of these features in SLT are essential, and it is difficult to evaluate the
representative potential of the elements in a pipeline setting where the overall
system error is cumulative. For this reason, in this study, we aim to evaluate
3D Residual CNN Based Sign Language embeddings in terms of explanatory
power in an Automatic Sign Language Recognition (ASLR) setting where tem-
poral mix-up between signs and co-articulation is minimal. For the general case
of Isolated SLR, the system aims to process a sign gloss and assign it to a sin-
gle sign gloss label. In a limited context of supervised learning set-up, labels
are glosses, which are transcription symbols assigned by sign language experts.
There may be a single signer or multiple signers in communication; however, the
ASLR system should be signer independent.

To convey the meaning of a performed sign gloss, Sign Languages use multiple
channels, which are manifested as visual cues. We can classify these visual cues
into two categories; (1) cues that are denoted as manual cues including hand
shape and movement, and (2) cues that are non-manual features including facial
expressions and upper body pose focusing on details without definitive large
displacements.

Solving the problem of Isolated SLR requires specialized methods, divided
into two categories. The first category is the handcrafted features, focusing on
the video trajectories and flow maps [27, 18, 25]. The second set of methods
includes machine learning algorithms and neural networks to improve classifi-
cation performance [13, 23, 18]. 3D CNN models, a state-of-the-art deep neural
network architecture, have proven successful in various video tasks [21, 22]. Li
et al. [13] adopted the same architecture in the SLR and reported improved
performance. However, Ozdemir et al. [18] provided the comparison of 3D CNN
models and the handcrafted methods but have found 3D CNN’s to be inferior
to a state-of-the-art handcrafted human action recognition approach, Improved
Dense Trajectories [25].

The aim of this work is to investigate why 3D CNN models may fail to show
similar success in sign language recognition and to observe what modifications
improve their performance. We hypothesize that the performance drop occurs
because of the common practice of scaling images into smaller size and sampling
frames [21, 22], due to computational requirements and difficulty of training big-
ger neural networks. One solution is handling the negative effect of the sampling
by increasing the model complexity as in [5, 28, 11], yet this increases compu-
tational requirement. Instead, we firstly apply attentive data selection at the
pre-processing phase by determining cues on SLR data. Secondly, we divide the
problem into multiple cues and train different expert classifiers on each kind
of dense feature. Thirdly, we refine the expert cue network knowledge into one
result, by applying score-level fusion.
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The paper organization is as follows. Sections 2 reviews related work, 3 ex-
plains the presented method, 4 presents the experimental results, 5 contains the
analysis of experiments and 6 presents the conclusions.

2 Related Work

Sign Language Recognition (SLR) aims to infer meaning from a performed sign.
In the sign classification task, an isolated sign is assigned a class label. A sign
gloss, the written language counterpart of the performed sign, can be used as a
mid-level or final stage label for such recognition in the supervised setting.

Sign Language Recognition is closely connected with video recognition or
human action recognition methods, and similar architectures have been used for
both. Two popular approaches to sign language representation uses handcrafted
features and deep neural network based methods.

Prior to the performance leap achieved by neural networks, hand-crafted
features were the best performing approach for representing human actions in
a sequential video setting. For a two-frame dynamic flow map estimation, the
Optical flow method is used to generate feature-level information. These fea-
tures perform better representation than RGB image sequences in settings where
motion is more indicative than shape [4]. While there existed numerous hand-
crafted feature extraction methods and their application to image sequences
such as STIP [14] and spatio-temporal local binary patterns [26], state of the
art performances with constructed features in action recognition and isolated
sign language recognition were obtained using Improved Dense Trajectories [25,
18] which is an outlier independent trajectory-based motion specialized feature
extractor.

Neural Network based methods focus on the convolutional architectures for
the classification task. Simonyan et al. [19] use branched CNN architecture that
splits the spatial and temporal data into each branch, achieving the latter using
the optical flow map between frames. Tran et al. [21] use 3D convolutional kernels
to build a 3D CNN variant to process video data in the end to end fashion.

One prerequisite for using deep neural networks is the presence of the large
datasets with ground truth annotations. Recently, big-scale isolated sign lan-
guage recognition datasets have become publicly available. Isolated SL datasets
contain videos of a user performing a single gloss, usually a single word or a
phrase. MS-ASL [23] is an American Isolated SL dataset, including 200 native
performers performing more than a thousand word categories. WL-ASL [13] is
a bigger dataset with two thousand word categories performed by one hundred
people. For other languages, Chinese [27] and Turkish [18] are among the avail-
able datasets. Popular human activity recognition datasets [20, 12, 9, 10] are also
used as an extra data and for finetuning in isolated SLR. Continuous SL datasets
are acquired in a less controlled setting, where a user can perform longer sign
sequences [7, 6].

SLR methods often use video pre-processing to reduce network bias and
variance and to increase network performance. Random cropping is one of the
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popular spatial augmentation techniques when training CNNs. Since CNN vari-
ants have small input spatial resolution, e.g., 224×224 for the popular ResNet50
network [8], such methods increase the transitive invariance of the models by of
processing different parts of the image in higher resolution compared to directly
downsampling the whole image frame.

Temporal pre-processing techniques operate on the temporal dimension of
the video data. The aim is to locate the dense temporal regions which have an
increased likelihood of the action flow. In recent work, different approaches are
applied for the temporal activity localization, e.g., exploiting both short term
and long term samples [24], combining high and low-frequency learners [5], and
detecting active window boundaries for the long sequences [16]. Our work differs
by applying cue selection before training phase and combining the classifiers in
the data augmentation level.

Combining the both pre-processing techniques allows an opportunity to ex-
ploit covariance between these spatio-temporal features. Spatio-temporal pre-
processing can possibly improve the signal to noise ratio of the processed data
when the region of interest is selected from dense regions. This process is shown
to be beneficial on other video recognition tasks, e.g., when extracted through
handcrafted methods such as optical flow [19], or directly through 3D CNNs [22].
In SLR, due to the nature of the task, sign language videos consists of the sparse
hand and upper body movements as well as facial expressions. It is possible to
use the domain-specific knowledge to exploit the spatio-temporal sampling us-
ing a guided pre-processing technique. Spatio-temporal multi cue networks [28]
exploit spatial regions of interest by firstly using a branch to estimate the region
of interest, then training different networks for each unit. However, applying
sampling at the training phase becomes more computationally expensive and
requires deeper architectures. Our score-level multi cue fusion approach address
this problem and described in the next section.

3 Method

In this section, we describe our method. We firstly describe the mixed convolu-
tional model, follow up with our Multi cue sampling process, and finally discuss
the score-level fusion method.

3.1 3D Resnets with Mixed Convolutions

Mixed convolutional networks are 3D Convolutional networks [21], which use
3D convolutional kernels to process video data in an end to end fashion. Tran
et al. [22] investigate the success of 3D CNNs and shares two effective variants
with strong empirical results. The first is mixed convolutional networks, and the
second is residual bottleneck based 2+1 convolutional networks.

Mixed CNN variant builds on the plain 2D residual networks, with the differ-
ence that the first layers are replaced with 3D convolutional kernels. First layers
are capable of processing input video directly, and gradually lower the feature
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dimension into 2D, then feed into more efficient 2D convolutional last layers. A
fully connected layer is employed after the final layer for the classification task.

Mixed Convolutional networks are denoted with MCxn, where x is the num-
ber of 3D convolutional layer blocks, and n denotes the total number of layers.
Following the baseline, we empirically experiment with different mixed convo-
lutional variants and employ the MC318 variant of the mixed convolutional
network.

3.2 Spatial and Temporal Sampling

The SLR task is conveyed through manual and non-manual cues. Information
is conveyed through the shape and configuration of the hand, body, and face
regions. The informative regions and intervals may be sampled with the help of
a state-of-the-art pose estimation approach such as OpenPose [3]. Making use of
pose estimation allows researchers to filter the entire frame by cropping specific
regions according to keypoints, which are hand, face, and upper body keypoints
in the case of SLR.

We would like to sample informative body regions to increase efficiency and
to filter out noise. Our approach is two-fold. At the first stage, we design a SLR
specific system by extracting the body, hand, and face regions using cropping
in the spatial domain, as shown in Figure 1. To achieve this, we utilize the pose
data as in [27, 18], to generate crops directly on the RGB image. In the second
stage, we focus on the dense regions on the temporal domain. We define the
active window as the temporal window where the active hand is moving. Then
we filter out the sparse frames and only feed the network the frames in the active
window, as shown in Figure 2.

Using Isolated data guarantees that the hand movement is in the middle of
the temporal sequence. The following steps are used to extract the active window
in the middle.

1. Use the moving hand detection framework in 4.2 to detect the active hand(s).
2. Define a selected hand as the active hand. If both hands are active, select

the dominant hand.
3. For the selected hand, track hand movements using Euclidean distance. Keep

the frame ids of the start of the first-hand movement and end of the last
hand-movement.

4. Define two thresholds TS , TE . Filter the boundary regions from the start
and end frame ids using corresponding thresholds defined earlier, and use
extracted frames for the training.

In some videos, the movement is not in the middle of the video. We detect
such exception cases by checking the position of the hand relative to the hip. We
also filter out segments too short to be a sign.

3.3 Multi Cue Score Fusion

Extracting multiple cues from different settings allows each model to build ex-
pertise on each cue. Therefore, there is a need to distill the knowledge of each
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Fig. 1. Spatial Sampling operation is visualized. From left to right; cue regions selected
for the process, and hand crop settings

Fig. 2. Different temporal sampling operations are shown in the above figure. Selected
frames are shown with color. Two branches represent uniform sampling and the Active
Window Based Sampling Process

model by combining weak expert classifiers. Zhou et al. [28] experiments with
distillation at the training time, by training a big scale model consisting of ex-
pert components. This has the drawback of increasing model complexity and
training time. Simonyan et al. [19] combines different branches while training,
but process the spatial and temporal branch separately at test time using a score
fusion approach. They propose firstly direct score fusion via averaging through
the network outputs and secondly, training a meta classifier above the extracted
features. We follow the former score fusion approach since it has less model
complexity and can achieve better run-time performance.

We experiment with two different multi cue fusion settings. First, we apply
the averaging operation to the predicted scores of each cue network results.
Secondly, we apply a weighted fusion, where each cue network is weighted by its
validation set performance.
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Fig. 3. Score-level multi cue fusion operation applied at the test time. Note that cue
networks have different test weights even the architecture is same

4 Experiments

4.1 Experimental Setup

Dataset To achieve a competitive experiment setting, and to implement our
proposal effectively, we have used a recently published Turkish isolated SLR
dataset BosphorusSign22k [18]. The dataset contains six different native signers,
performing 744 different word categories. Each category is labeled with a sign
gloss, that describes the performed sign. The dataset contains about 22, 000
video clips. Authors also share 3D body pose keypoints in Kinectv2 format, and
2D body and hand keypoints obtained from OpenPose [3].

Evaluation Metric Following the work of Ozdemir et al. [18], we aim to com-
pete on the sign language classification task. It is described as estimating the
corresponding sign gloss for a given input video at test time, and scoring is eval-
uated in the accuracy of all of the test estimations. Out of all 6 performers, video
clips of User 4 is defined as a test set, which is about 1/6 of the total dataset
and it includes samples from all of the 744 classes.

Implementation Details Our experiment setting follows the baseline pa-
per’s[18] neural network based experiment setting. We apply provided prepro-
cessing pipeline, resize the image into 640 × 360, crop the center square region
then resize via bilinear interpolation to achieve 112 × 112 input resolution. We
adopt the mixed convolutional MC3 18 CNN variant implemented in the torchvi-
sion library, start training process from the Kinetics [10] pretrained state, modify
last 3 blocks, and apply uniform frame sampling. Our single model finetuning
spans 48 hours with 32 batch size on Nvidia 1080 TI GPU.

Our replicated network resulted in 75.23% accuracy, which is over 3% lower
than the reported 78.85% accuracy result. We suspect that the difference is
caused by randomized states such as optimizer initialization and different hy-
perparameter choices such as the learning rate.

For pose estimation, have used OpenPose [3], an up-to-date 2D and 3D pose
extraction framework. Openpose Body 25 estimation setting is used with 1920×
1080 input video resolution, and extraction is applied with hand tracker active.
Single frame processing took an average of 0.8 seconds on 1080 TI GPU. After
the processing, the final keypoint file includes 18 keypoints for the body and 21
keypoints for each hand.
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Table 1. Hand spatial sampling settings. First table represents hand activity distri-
bution in the BS22k dataset. Second table represents test results of the different hand
crop settings and resulting accuracy values

Distribution Relative Frequency (%)

Both Active 66.44
Only Left Active 33.07
Only Right Active 0.40

Crop Setting Accuracy(%)

Single Hand 79.13
Both Hands 85.81
Mixed 86.25

4.2 Experimental Results

Spatial sampling. Spatial sampling operation is applied through two phases.
Firstly, the cue region is detected, cropped, and optionally concatenated in a
multiple cue setting. Secondly, sampling is applied using bilinear interpolation.

Body Setting. Following the standard SLR pipeline, we apply cropping to
the human body region before training. Refer to the Section 4.1 for the details.

Hand Setting. SLR work suggests the dominant hand, the most used hand,
conveys the most information in communication. To detect the dominant hand in
the BS22k dataset, we employ a hand motion tracking algorithm. This detection
process is achieved by the following:

1. Detect the Thumb keypoints on each frame;
2. Define the first thumb keypoint on each hand as two anchors;
3. If the following thumb keypoint on the next frames has greater distance than

threshold compared to the anchor, conclude the hand as moving.

The distance metric is selected as the Euclidian distance, and the threshold is
selected as 150 pixels. Table 1 provides the detection results on moving hands-on
BS22K dataset. We can conclude that BS22K dataset performers are using the
left hand dominantly.

During signing, only one hand may be active, or both hands may be active.
We have adopted three different policies: Firstly, the single cue setting is applied
by selecting the dominant hand. The cropping procedure is applied to the 350×
350 area around the keypoint #2 center. Secondly, both cue setting is applied by
selecting both hands. Cropping is applied to 175 × 350 area around the Thumb
keypoint, and each hand result is concatenated horizontally. Thirdly, the mixed
setting uses a single cue approach when a single hand is active and uses both
cue approach when both hands are active. All three policies are followed by the
bilinear interpolation downsampling. Results are provided in the right-hand side
of Table 1.

Face Setting. Sign language performers often have cues with face gestures
and lip movements called mouthings that give a hint for the gloss of the sign.
Since the size of the face is small, we crop the whole face. Openpose [3] provides
the nose keypoint in the body keypoint set and this keypoint is used as a center
to crop a 200 × 200 subsample.
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Table 2. Classification accuracy results of the sampling and fusion settings. Three
different settings are provided in the table. From left to right, (1) Single cue spatial
sampling results, (2) Active Window Based Temporal Sampling applied to each crop,
and (3) Spatial&Temporal settings are combined in one setting. Note that the bottom
two rows include the fusion result of the above three models in each setting.

Spatial Temporal S&T Combined

Setting Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5

Body 75.73 93.88 81.83 96.02 86.91 98.17
Hand 86.25 97.61 88.70 97.59 91.73 98.72
Face 24.27 44.45 37.00 57.89 39.12 59.33
Fusion 90.63 98.92 93.88 99.65 94.47 99.78
Weighted Fusion 92.18 99.27 94.03 99.56 94.94 99.76

Score-Level Fusion We follow the insight that the different cue models can
capture a different subset of features, which can lead to better results when
combined effectively. Standard fusion is applied by averaging softmax outputs
as in [19]. In the weighted setting, we have applied weights to each model
proportional to their validation accuracy via standard multiplication. Table 2
provides the result of the fusion.

Temporal Sampling Standard SLR training pipeline involves using the stan-
dard uniform frame sampling. We propose the active window based temporal
sampling, applied by firstly extracting the dense cue regions before applying the
uniform selection. Active window is detected as the part that the active hand is
moving and discard the rest of the temporal data.

We used double thresholding for finding the active window. We have found
that the start threshold TS = 90, and the end threshold TE = 50 generates
competitive empirical results. Using the temporal sampling framework, we have
successfully segmented the active window for each video. Then, we applied uni-
form sampling along with our standard training pipeline. Results are provided
in Table 2.

Spatio-Temporal Sampling We applied active window based temporal sam-
pling on top of the spatial multi cue regions. The final spatio-temporal sampling
framework has improved on both single settings. With the addition of score-level
fusion, test accuracy reached to 94.94%, which is the best result in all proposed
settings as seen in the Table 2.

Our best setting provides 16.09% improvement on our baseline neural net-
work setting [18]. We also manage to beat their previous best hand-crafted state-
of-the-art result with 6.41% accuracy rate. Whereas the previous best method
uses more than ten times bigger input spatial resolution (640×640), complicated
hand-crafted methods [25] and a second stage SVM classifier, our approach only
contains a 3D CNN and a sampling pipeline. Comparison with the baseline re-
sults is shown in Table 3.
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Table 3. Comparison with the baseline approaches IDT and MC3 18 model.

Method Acc@1 Acc@5

Baseline IDT [18] 88.53 -
Baseline MC3 18 [18] 78.85 94.76
Weighted Fusion - S&T Combined 94.94 99.76

Fig. 4. Comparison of the models in the Top-N accuracy setting. The horizontal axis
denotes the increasing N value, and the vertical axis denotes the accuracy value. First
plot shows the Single Cue Setting comparison, and second plot shows the Multi Cue
Setting additive comparison. Despite the difference in single setting performance, each
cue boosts the fusion results.

5 Discussion and Analysis

Accuracy figures are not very informative when considering whether fusion will
be beneficial. Top N Accuracy measures how often the top N ranks contain the
correct class. In our experiments, we report Top-5 Accuracy along with Top-1
Accuracy. Top-N Accuracy results will increase with an increasing N , and are
expected to be settled to 1 when N approaches to the maximum class number.
Here, we provide graphs of Top-N accuracy versus N.

We share the Top-N accuracy graph in Figure 4. On the left-hand side, Top-
N Accuraccies of the individual cues are reported. The hand cue performs the
best, closely followed by the body cue. In both, there is a sharp increase between
ranks 1 and 2. This shows that in a large number of cases, although the correct
class fails to be predicted, it is the runner-up. This explains why the fusion is
beneficial. Although the Top-N accuracy of the face cue is much lower, it is still
beneficial for fusion.

Top-N accuracy of the muti-cue fusion is given in the right-hand side of
Figure 4. We start by the hand model, then include the body model, and finally
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Table 4. Effects of excluding individual cue units from the final fusion model. Using
the different two cue settings and their performance, we infer to the excluded setting
and its effect on the final mix.

Setting Accuracy Excluded Cue Effect (%)

Body + Hand 91.80 Face 2.08
Body + Face 84.66 Hand 9.22
Hands + Face 88.70 Body 5.18

Table 5. F1-score comparison for the top ten sign glosses that hand sampling outper-
forms body sampling. (Sorted in the alphabetical order)

Sign Gloss Hand Body Fusion Sign Gloss Hand Body Fusion

Aspirin 0.62 0.00 0.67 Internet 2 1.00 0.33 1.00
Deposit(v) 2 0.89 0.25 1.00 Noon 0.91 0.33 1.00
Exchange(v) 0.57 0.00 1.00 Shout(v) 2 0.91 0.33 0.91
Head 0.89 0.29 1.00 Sleep(v) 0.62 0.00 0.67
Identify(v) 0.89 0.00 1.00 Turn(v) 1.00 0.40 0.89

add the face model to the mix. This analysis allows us to see the cumulative
progress over different fused models. We observe that the Top-2 Accuracy of
hand alone is higher than Top 1 accuracy of both fusion settings. This shows
why weighted fusion outperforms score fusion and shows that more advanced
models can attain higher performance.

5.1 Spatial Ablation Study

Which cue benefits the fusion result the most? We have applied score fusion to
all two-pair combinations of each cue setting. Using the ablation information,
we can observe the effect of each cue to overall fusion. E.g., for finding the
effect of the face model, we can subtract the Body+Hand setting result from the
Body+Hand+Face setting. Table 4 shows the result of the using such calculation.
It is seen that hands subunit has the most effect on fusion with 9.22% percent,
followed by body model with 5.18%.

We have provided an analysis of the two most effective cues by comparing
the gloss based performance. As a comparison metric, we adopted the F1-score,
which should be more representative of false positives and false negatives, thus
is more suitable for the gloss based evaluation.

Gloss Based Cue Comparison We share the top ten sign glosses that the
hand cue model has a major advantage compared to the Body Cue model in
Table 5.

We provide detailed analysis for the one example of the IDENTIFY(v) sign
gloss. IDENTIFY(v) sign is performed by using only the left hand and touching
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1. HEAD

IDENTIFY Sign Gloss Sample

Body Model Top-5 Predictions

Hand Cue
Success@1

Body Cue
Success@5

M
od

el

2. EAT

3. PSYCHOLOGY

4. PHONE

5. IDENTIFY
(Correct)

Fig. 5. Class confusions of IDENTIFY(v) sign gloss for the Body cue model

the head with the index finger, and the rest of the fingers are on the semi-open
position. Whereas the hand cue model has the perfect score, the Body cue model
only achieves success in the fifth guess.

Wrong predictions of the Body cue model are HEAD, EAT, PSYCHOLOGY,
and PHONE sign glosses. We inspect each confusion as follows:

– HEAD sign differs from IDENTIFY(v) with the close position on all fingers
other than the index finger.

– EAT sign is performed by moving the left hand close to the mouth and with
all fingers are in a closed position.

– PSYCHOLOGY and PHONE sign glosses are performed with the left
hand that and have open and semi-closed hand shapes, respectively.

By evaluating the confused cases, we conclude that the hand model has an
advantage capturing hand shape information, possibly due to increased spatial
resolution in the hand region.

Effect of the Score-Level Fusion. We share the Fusion Result of the
Body and Hand cue models in Table 5. Data has shown that the fusion model
successfully captures the hand cue features. The fusion model even outperforms
both single cue models in 7 out of 10 glosses.
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Table 6. Analysis of the temporal sampling based recognition approach with respect
to signs with certain grammatical sign attributes: one-handed signs, two-handed signs,
mono-morphemic signs, compound signs, and signs involving repetitive and circular
movements, respectively

Number of Classes with Selected Attribute

234 510 75 669 457 287 375 369 744

One
Handed

Two
Handed

Circ. Not
Circ.

Rep. Not
Rep.

Mono Comp. All

Body 72.94 86.10 86.43 81.33 80.77 83.55 77.40 86.48 81.83
Hand 83.78 91.07 91.40 88.41 87.54 90.59 85.36 92.24 88.70
Face 45.33 33.01 29.41 37.82 36.39 37.99 33.79 40.52 37.00
Fusion 91.82 94.86 96.15 93.63 93.45 94.57 92.08 95.78 93.88
W.Fusion 90.87 95.55 95.70 93.85 93.37 95.09 92.21 95.96 94.03

5.2 Analysis of Method on Types of Gestures Recognized

To further analyze the types of signs where the presented method performs
well and fails, we have labeled the 744 sign glosses in the dataset according to
specific sign attributes. The sign classes are grouped into categories such as one-
handed signs, two-handed signs, mono-morphemic signs, compound signs, and
signs involving repetitive and circular movements of the hands.

Table 6 summarizes the analysis: The experiments are performed using tem-
poral sampling with the best performing mixed convolution approach. Attribute-
wise accuracy scores are calculated using the test set samples belonging to the
classes containing the selected attributes. Overall, the accuracy scores in Table
6 demonstrate that for nearly all the subsets in the dataset, hand, body, and
face-based features show consistency in their relative performance.

Looking at the results for different attributes one by one, we can see that
signs involving two moving hands are better recognized than the one-handed
sign glosses in the dataset. The performance difference can be explained by the
fact that in one-handed signs, the weight of handshape may be more critical than
the two-handed signs. The relative positioning and appearance of both hands,
which is more apparent, may be easier to represent for the neural network.

Secondly, compound signs have a greater recognition accuracy than mono-
morphemic signs (95.96% vs 92.21%). Considering the number of signing hands,
the amount of additional information in the form of consecutive morphemes
present in an isolated sign makes recognition easier, thus improving the perfor-
mance system. From this result, we can infer that the method’s representation
power is higher when a sign is greater in length and contains different hand
shape and position combinations.

Looking at repetitive gestures, we see a 1.6% improvement in accuracy when
the signs do not contain repetitive hand gestures. The issue with repetitions,
which we can attribute to this difference, is that the temporal and spatial forms
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of repetitions are more prone to differ between performances and users, in com-
parison to the static hand shape parts of the signs that follow specific rules.

Finally, we take a look at circular signs, which include circular hand and arm
movements, which involve at least one entire rotation. These signs are dynamic
signs where the hands do not stop while presenting a handshape. As these signs
do not conform to the movement-hold phonological model of sign languages [15],
representing them by choosing temporal frames is more complicated, reducing
the effectiveness of keyframe based approaches [11]. Overall, the method per-
forms well with circular signs, making fusion attempts with methods focusing
more on the handshape of signs promising future leads.

6 Conclusion

In this paper, we proposed a score-level multi cue fusion approach for the Iso-
lated SLR task. Unlike the previous work [18, 11], we focused on both spatial
and temporal cues. We employed 3D Residual CNNs [22], and trained different
models as an expert on the single cue. We distilled the expert knowledge using
the weighted and unweighted score-Level fusion. In our experiments, we have
seen that our approach has outperformed the baseline results on the Bosphorus-
Sign22k Turkish Isolated SL dataset [18].

We have provided the single cue and multi cue Top-N accuracies to demon-
strate incremental performance gain with each cue. Our gloss-level study shows
that each cue model has specific expertise and provides an indispensable knowl-
edge source to the fusion model. Our analysis of sign gloss attributes hints that
the method performs better on temporally more complex signs with two-handed
gestures, it shows comparatively worse on mono-morphemic gestures with a sin-
gle hand. For that reason, the primary approach to improving performance lies in
improving hand shape recognition. Possible strategies involve increasing model
depth, finding better optimization techniques, or increasing the model input size.
We hope that the following work will extend the SLR cues into other Sign Lan-
guage problems, help progress in unresolved SL tasks such as translation, and
help uncover language-independent cues.
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